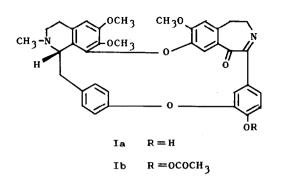
Stepinonine, A New Dimeric Benzylisoquinoline - 2-Phenyl-shomotetrahydroisoquinoline Alkaloid

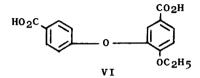
T. Ibuka, T. Konoshima, and Y. Inubushi

Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (Received in Japan 7 August 1972; received in UK for publication 21 August 1972)

In a previous paper¹⁾, one of the authors has reported the isolation of a new phenolic alkaloid, to which the tentative name, Base-B, has been given, from <u>Stephania japonica</u> Miers grown in Formosa. The present communication is concerned with the structure proof of this alkaloid which is now designated as stepinonine.

Stepinonine (Ia), m.p. 244-245°, 280° (dimorphism), $C_{36}H_{34}O_7N_2^{(2)}$, [a]_D -28° (c=1.0, pyridine), v_{max}^{CHC1} 3 : 3500 (OH) and 1663 (C=O) cm⁻¹, τ^{3} : 2.63-4.40 (arom. proton, 10 H), 6.04, 6.15 and 6.63 (OCH₃) and 7.46 (N-CH₃), was obtained as yellow prisms. Acetylation of (Ia) with Ac₂O-pyridine gave the monoacetate (Ib), m.p. 157°, the i.r. spectrum (KBr) of which showed the phenolic acetate band at 1767 cm^{-1} and no hydroxyl band. Reduction of (Ia) with NaBH₄ in methanol provided tetrahydrostepinonine (II), m.p. 173-174°, C36H3807N2·H20, whose i.r. spectrum revealed no carbonyl band. Methylation of (II) with formalin-NaBH₄ afforded the N-methyl derivative (III), m.p. 164°, C_{37H40}O_{7N2}, $M^+: m/e \ 624, \tau \ (CDCl_3/pyridine=2:1): \ 6.32, \ 6.60 \ and \ 6.82 \ (OCH_3), \ 7.40 \ and \ 7.84$ The signal due to the newly introduced N-methyl group appeared at (N-CH2). abnormally higher field than that expected for the N-methyl group in the common tetrahydroisoquinoline derivatives, suggesting that this alkaloid may not be the known bisbenzylisoquinoline alkaloids. O-Methylation of (III) with diazomethane gave N,O-dimethyl-tetrahydrostepinonine (IV), m.p. 261-262°, C38H4207N2.

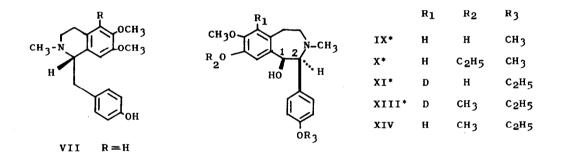

Reductive fission reaction of (IV) with sodium in liq. ammonia gave two phenolic compounds. One of these, m.p. 142-144°, $[\alpha]_D^{24}$ +117° (c=1.0, CHCl₃)


4001

was proved to be identical with the authentic specimen of S-armepavine (VII).⁴⁾ Another phenolic base, m.p. 204°, $C_{19}H_{23}O_4N$, $[\alpha]_D^{19} +20°$ (c=0.5, CHCl₃), was ethylated with diamoethane to give the hydro-3-benzazepine derivative (X), τ : 5.34 (C_1 -H, d., J=1 cps), 6.59 (C_2 -H, d., J=1 cps), 6.14 and 6.22 (OCH₃), 7.88 (N-CH₃) and 8.60 (OCH₂CH₃), which was identified with the authentic sample of 4',7-dimethoxy-8-ethoxy-N-methyl-2-phenyl-1,2,4,5-tetrahydro-3H-3-benzazepinel-ol (racemate of X)⁵) obtained through an unequivocal synthetic route, by direct comparison, establishing the structures of (IX) and (X).

The position of a hydroxyl group in stepinonine and the linking fashion connecting two moieties were established as follows. O-Ethylation of (III) with diazoethane, followed by oxidation of the resulting non-phenolic base (V), m.p. 255-260°, $C_{39}H_{44}O_7N_2 \cdot H_2O$, with KMnO₄ in aqueous acetone provided the ethoxydiphenyl ether dicarboxylic acid (VI), m.p. 276-280°, which was identified with the authentic sample⁶ by direct comparison. Stepinonine therefore is built up of armepavine (VII) and the hydro-3-benzazepine moiety linked by two diphenyl ether linkages in the "head to head" and "tail to tail" manner.

In order to establish the attached position of a diphenyl ether linkage at the armepavine moiety (C_5 or C_8), deuteration experiment, followed by the reductive fission with sodium in liq. ammonia was performed.⁷⁾ Thus, treatment of the compound (V) with $C_2H_5OD - D_2O - 3$ % DCl at 125-130° for 100 hr gave the dideuterated product (XII) which was then subjected to the reductive fission to afford two phenolic compounds. One is identified with an authentic sample of S-[5-D]-armepavine (VIII).⁷⁾ The other (XI), m.p. 181-184? M⁺ : m/e 344, was methylated with diazomethane to derive the compound (XIII), the structure of which was certified by the comparison with the synthetic sample of 7,8-dimethoxy-4'-ethoxy-N-methyl-2-phenyl-1,2,4,5-tetrahydro-3H-3-benzazepine -1-ol (racemate of XIV). It is thus evident that the armepavine moiety and the hydro-3-benzazepine moiety must link at the C, position of the former and the oxygen function at the C_g position of the latter. Therefore, stepinonine must have the structure (Ia). Stepinonine is the first example of the alkaloid possessing this type of the dimeric structure.



VIII

 $\mathbf{R} = \mathbf{D}$

сн ₃ -1 н	\sim		-	30 R	\sim	-R1 `H
		R ₁	^R 2	R ₃	R4	
	11	Н	H	Н	H	
	111	снз	н	н	Н	
	IV	снз	снз	н	н	
	v	снз	с ₂ н5	н	н	
	XII	СНз	C ₂ H ₅	D	D	

* The absolute configurations at C₁ and C₂ chiral centers remain equivocal but the cis relationship of these centers was estimated by comparing the coupling constants of protons concerned with those of the related compounds⁵) (cis: J_{H₁, H₂}=1 cps ; trans: J_{H₁, H₂⁼⁸ cps).}

REFERENCES and REMARKS

- 1) M. Tomita and T. Ibuka, YAKUGAKU ZASSHI, 83, 996 (1963).
- 2) Correct analytical data were obtained for the compounds shown by the molecular formulas.
- Unless otherwise stated, the n.m.r. spectra were measured on Varian
 A-60 Spectrometer in CDCl₃ with TMS as an internal standard.
- 4) M. Tomita and E. Fujita, <u>Chem. Pharm. Bull.</u>, <u>1</u>, 101 (1953).
- 5) Syntheses of these compounds will be stated in a full paper. Cf.
 Y. Inubushi, T. Harayama, and K. Takeshima, <u>Chem. Pharm. Bull.</u>, <u>20</u>, 689 (1972).
- 6) M. Tomita and T. Ibuka, YAKUGAKU ZASSHI, 83, 940 (1963).
- 7) Y. Inubushi, T. Kikuchi, T. Ibuka, and I. Saji, <u>Tetrahedron Letters</u>, <u>1972</u>, 423.